2.12. Let $L(n)$ be the number of lines. Then $L(n) = 2L(n/2) + 1$ if $n > 1$ and $L(1) = 1$. Solving, we get $L(n) = 2n - 1 = \Theta(n)$.

2.16. pos = 1
while $A[pos] < x$:
 pos = 2 * pos
return binary-search($A[1..pos]$, x)

The algorithm first finds an index with value greater than or equal to x, then invokes a standard binary search procedure. During the initial phase, pos is doubled at most $\log n$ times (because after this many doublings, it exceeds n, and thus $A[pos] > x$); thus the overall running time is $O(\log n)$.

2.19. (a) The $merge$ procedure takes time $O(k + l)$ to merge two arrays of size k and l. In this case, we are performing $k - 1$ merge operations. In the jth such operation, one of the arrays has size jn while the other has size n; therefore the time taken for the operation is $O((j + 1)n)$. The total time taken is then $O(2n + 3n + 4n + \ldots + kn) = O(k^2n)$.

(b) Let $multimerge(A_1, A_2, \ldots, A_k)$ denote the result of merging arrays A_1, \ldots, A_k, and let $merge$ be our two-way merge operation from class. We can do a multimerge using divide and conquer:

$$multimerge(A_1, A_2, \ldots, A_k) = merge(multimerge(A_1, A_2, \ldots, A_{\lfloor k/2 \rfloor}), multimerge(A_{\lfloor k/2 \rfloor + 1}, \ldots, A_k)).$$

Let $T(k)$ denote the time taken to multimerge k arrays of length n. Then

$$T(k) = 2T(k/2) + O(kn)$$

because there are two recursive calls to $multimerge$, each taking time $T(k/2)$, and the final $merge$ operation involves kn elements. The solution to this recurrence is $T(k) = nk \log k$, a big improvement over the scheme in part (a).

2.22. Here’s the algorithm (assuming for convenience that m, n are powers of two).

```python
function getelement(x[1...n], y[1...m], k)
if n = 0:    return y[k]
if m = 0:    return x[k]
if x[n/2] > y[m/2]:
    if k < (m + n)/2:
        return getelement(x[1...n/2], y[1...m], k)
    else:
        return getelement(x[1...n], y[(m/2) + 1...m], k - m/2)
else:
    if k < (m + n)/2:
        return getelement(x[1...n], y[1...m/2], k)
    else:
        return getelement(x[(n/2) + 1...n], y[1...m], k - n/2)
```

Brief justification: If $x[n/2] > y[m/2]$, then the top half of array x is greater than the bottom halves of both arrays. Therefore, the entire top half of array x must lie above the median of the combined arrays. Similarly, the entire bottom half of array y must lie below the median of the combined arrays. By comparing k to $(m + n)/2$, we can therefore eliminate one of these two half-arrays. The other cases are similar.

Running time: In each recursive call, a constant amount of time is taken and either \(m \) or \(n \) gets halved in value. This can happen at most \(\log m + \log n \) times before one of them reaches zero. Therefore the total running time is \(O(\log m + \log n) \).

2.23. (a) **Solving the problem in \(O(n \log n) \) time.**

Here’s a divide-and-conquer algorithm:

```python
function majority (A[1...n])
    if n = 1: return A[1]
    let A_L, A_R be the first and second halves of A
    M_L = majority(A_L) and M_R = majority(A_R)
    if neither half has a majority:
        return ‘no majority’
    else:
        check whether either M_L or M_R is a majority element of A
        if so, return that element; else return ‘no majority’
```

Brief justification: If \(A \) has a majority element \(x \), then \(x \) appears more than \(n/2 \) times in \(A \) and thus appears more than \(n/4 \) times in either \(A_L \) or \(A_R \); it follows that \(x \) must also be a majority element of one (or both) of these two arrays.

Running time: \(T(n) = 2T(n/2) + O(n) = O(n \log n) \).

(b) **A linear-time algorithm.**

```python
function majority (A[1...n])
    x = prune(A)
    if x is a majority element of A:
        return x
    else:
        return ‘no majority’

function prune (S[1...n])
    if n = 1: return S[1]
    S' = [ ] (empty list)
    for i = 1 to n/2:
        if S[2i - 1] = S[2i]: add S[2i] to S'
    return prune(S')
```

Justification: We’ll show that each iteration of the `prune` procedure maintains the following invariant: if \(x \) is a majority element of \(S \) then it is also a majority element of \(S' \). The rest then follows.

Suppose \(x \) is a majority element of \(S \). In an iteration of `prune`, we break \(S \) into pairs. Suppose there are \(k \) pairs of Type One and \(l \) pairs of Type Two:

- **Type One:** the two elements are different. In this case, we discard both.
- **Type Two:** the elements are the same. In this case, we keep one of them.

Since \(x \) constitutes at most half of the elements in the Type One pairs, \(x \) must be a majority element in the Type Two pairs. At the end of the iteration, what remains are \(l \) elements, one from each Type Two pair. Therefore \(x \) is the majority of these elements.

Running time. In each iteration of `prune`, the number of elements in \(S \) is reduced to \(l \leq |S|/2 \). Therefore, the total time taken is \(T(n) \leq T(n/2) + O(n) = O(n) \).