The PSoC RangeFinder
A Simple Ultrasonic Distance Meter

Some distances are more difficult to measure than others. Therefore, Fabio built his own ultrasonic rangefinder, which won First Prize in the Cypress PSoC design contest. It can be used for measuring liquid levels, generic distances, and even the depth of snow.

Some distances are more difficult to measure than others. Therefore, Fabio built his own ultrasonic rangefinder, which won First Prize in the Cypress PSoC design contest. It can be used for measuring liquid levels, generic distances, and even the depth of snow.

There are several ways to measure distance without contact. Some products have infrared light emitters and receivers that determine an object’s distance by implementing the optical triangulation method. Other devices have laser-based systems that increase accuracy and precision. For electrically conductive metal objects, the eddy current method is an option, and capacitive sensors that are independent of the metal used in the measured objects can be used.

I decided to use ultrasonic waves. My ultrasonic PSoC RangeFinder measures the amount of time it takes for a pulse of sound to travel to a particular surface and return. Then, the device calculates the distance based on the estimated speed of sound. In this article, I’ll explain how I built this simple ultrasonic distance meter.

Photo 1a is a picture of my PSoC RangeFinder with an LCD. The display is optional, and I removed it for Photo 1b. For this particular application, the only required components are a PSoC microcontroller, two 40-kHz ultrasonic transducers, two resistors, and two capacitors. Similar circuits are typically complicated and expensive, consisting of a large number of integrated circuit and passive components.

Take a look at the RangeFinder’s system block diagram in Figure 1. As you can see, it’s divisible into three parts: the transmitting section, receiving section, and output section. Each section contains several PSoC blocks. Using the PSoC chip family, all of the digital and analog devices are on-board with the microcontroller.

The RangeFinder has numerous applications. You can use it for the positioning of robots as well as measuring generic distances, liquid levels in tanks, and the depth of snow banks. The device can also serve as a motion detector in production lines where surfaces must not be damaged, or you can use it for educational purposes.

A restricted target angle (it requires a near-perpendicular surface) and large beam, which can create poor resolution, seem to be the RangeFinder’s only limitations. Despite these drawbacks, you’ll find the device’s main features to be extremely useful.

The RangeFinder has a 40-kHz operating frequency, a range of 25 to 200 cm, and 1-cm resolution. In addition, it
requires only a single 5-VDC power supply and draws just 25 mA (23 mA without the LCD). The device has one PWM output and one TTL-level serial output (9600 bps, 8 bits, 1 stop bit, and no parity). Finally, don’t forget the optional 2 × 16 LCD, software calibration, and dynamic receiver stage gain increment.

MICRO CONFIGURATION

Several PSoC microcontroller resources were used in this project. I applied the following PSoC digital resources: five 8-bit counters, an 8-bit serial transmitter, two 8-bit PWMs, and a digital inverter. I implemented the following analog resources: one programmable gain amplifier (PGA), two two-pole passband filters, a programmable threshold comparator, and a reference multiplexer. In addition, I used the EEPROM and LCD toolbox software modules.

Photo 2 is a screen shot of the PSoC Designer with the Device Editor showing the placement of the PSoC’s digital and analog resources. As you can see, a large number of resources are required. All of the digital blocks and several analog blocks are employed.

PRINCIPLES

The transmission section is based on four digital blocks allocated in the DBA00, DBA01, DBA02, and DBA03 blocks. An 8-bit counter (called “TimeBase”) provides a 17,240-Hz time base frequency. Sound velocity depends on ambient air temperature, which is calculated for an air temperature value of 22°C:

\[
V_{\text{SOUND IN AIR}} = 331.4 + (0.6 \times T) \text{ m/s}
\]

where \(T \) is equal to the air temperature (°C). So, for a middle value of 22°C:

\[
V_{\text{SOUND IN AIR}} = 331.4 + (0.6 \times 22) = 344.6 \text{ m/s} = 34,460 \text{ cm/s}
\]

For a round-trip ping, you have:

\[
f_{\text{TimeBase}} = \frac{V_{\text{SOUND IN AIR}}}{2} = 17.23 \text{ kHz}
\]

And with a 24-MHz MCU clock:

\[
f_{\text{TimeBase}} = \frac{24 \text{ MHz}}{116} = \frac{2 \text{ MHz}}{116} = 17.24 \text{ kHz}
\]

An 8-bit counter [F40kHz] drives the ultrasonic transmitter and a digital inverter [F40kHz_inv]. The phase of the voltage applied to the positive and negative terminals of the sensor has been shifted 180°, so two times the supply voltage is applied to the sensor.

The 40-kHz transmission enables an 8-bit counter [called “Meter”] that increments one step per centimeter. The Meter clock input is TimeBase (17,240 Hz).

The ultrasonic receiver's negative terminal is connected to the analog ground reference [AGND—pin 25, P02] provided by RefMux_1, a reference multiplexer allocated in the ACA03 block. The ultrasonic receiver's positive terminal is connected to an amplification chain based on a programmable gain amplifier [PGA_1] and two two-pole passband filters [BPF2_1 and BPF2_2]. The first passband filter is designed for a 40-kHz center frequency and a correspondent gain of 33 dB. The second filter is also designed for a 40-kHz center frequency, but it has a 10-dB passband gain. Because of the discrete value of the capacitors integrated in the switched-capacitor analog blocks, the real frequency response is different from the nominal one.

Figure 2 shows the BPF2_1 and BPF2_2 frequency responses. The BPF2 output is sent to the programmable threshold comparator [CMPRG_1]. When a 40-kHz
selected this value for a good contrast in the LCDs used in prototypes. It can be changed to adjust the contrast using different LCD modules. In addition, a 10-kΩ trimmer with the wiper to the contrast input and other pins connected to 5 V and GND can replace it. This allows for decent LCD contrast regulation.

Without an LCD, the circuit draws approximately 23 mA from a 5-V power supply. If you use an LCD, the current consumption is 25 mA. The optional LCD is a standard 2 × 16 model.

THE SOFTWARE

Figure 4 is a flowchart depicting the microcontroller’s software. The main program sets up the analog and digital blocks before testing JP1 to determine whether a signal is received, the CMPPRG_1 output is high logic level, so the software can read it.

There are two different output devices in the output section: an 8-bit pulse width modulator and an 8-bit serial transmitter. In the former, the frequency of the rectangular signal that’s available on the PWM output (P2.7, pin 5) is approximately 780 Hz; its pulse width is proportional to a measured distance value [5 µs per centimeter]. The latter is a standard TTL logic-level serial output. Transmission parameters are 9600 bps, 8 data bits, 1 stop bit, and no parity bit. An 8-bit counter, Baud9600, provides a 9600-Hz base for the serial transmitter block, SerialTX, with its output on P2.4 (pin 22). If you need RS-232 interfacing, you can use an external TTL-level RS-232 converter (e.g., the common, inexpensive MAX232). This means that you can also interface the RangeFinder to a PC or microcontroller-based system with a standard RS-232 port.

THE HARDWARE

The RangeFinder’s circuitry is quite simple (see Figure 3). The most important part is U1, which is a CY8C26443 PSoC microcontroller. U1 does all of the work with its internal analog and digital blocks.

Two capacitors, C1 and C2, suppress high- and low-frequency noise on the 5-V supply line. R1 is a 100-kΩ resistor that holds the DC input voltage of the receiving stage to AGND (2, 5 V). R2 regulates the LCD contrast. I
The software in Calibration mode is similar to that in Normal mode; however, the measured value is compared with the constant value 50, and the resultant offset is stored in nonvolatile EEPROM and used to calculate the measured range in Normal mode.

TimeBase_int is the interrupt subroutine for the TimeBase 8-bit counter. This is the most important portion of code (see Listing 1). When time1 is greater than the value of blank time (blank time prevents false echoes caused by the lateral receiving of transmitted 40-kHz bursts), the software tests the logical value of the comparator. If a pong is received, the comparator output logic level is one, the time1 value is stored in RAM location range, and the TimeBase interrupt is disabled. As a result, the value stored in the range location represents the measured distance.

If the comparator logic level output is equal to zero, then the PGA_1 gain is dynamically incremented in 16 steps from one to 16 by modifying the corresponding gain register; therefore, the far echoes are much more amplified.

As you can see in Table 1, the PGA_1 gain increment is not linear. This is not a problem, because more amplification is required for long distances. As you can see in Listing 1, the PGA_1_SetGain routine is called to change the amplifier gain and the value stored in the relative configuration register.

PRACTICAL CONSTRUCTION

Constructing the circuit isn’t difficult. It will take you just a few minutes. You may download the single-sided PCB design from the Circuit Cellar ftp site. The corresponding component layout is available on the ftp site, as well.

First, you have to mount the two wire links. The links are followed by the microcontroller socket, two resistors (mounted vertically), and two capacitors. Pay attention to the polarity of C2, which is a tantalum electrolytic capacitor. Follow with the two headers and jumper. J1 is a four-pin male header for the power supply and output connections. J2 is a 14-pin female header for the LCD connection.

The two ultrasonic transducers are soldered directly to the copper-sided padstacks. These common 40-kHz ultrasonic transducers are the kind used in car alarms. Make sure you

Table 1—The PSoC’s PGA gain values are used to set the PGA_1 gain during the measuring routine. For more information, study the PGA_A module datasheet from Cypress.

<table>
<thead>
<tr>
<th>Gain</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA_A_G16_0</td>
<td>08h</td>
</tr>
<tr>
<td>PGA_A_G8_00</td>
<td>18h</td>
</tr>
<tr>
<td>PGA_A_G5_33</td>
<td>28h</td>
</tr>
<tr>
<td>PGA_A_G4_00</td>
<td>38h</td>
</tr>
<tr>
<td>PGA_A_G3_20</td>
<td>48h</td>
</tr>
<tr>
<td>PGA_A_G2_67</td>
<td>58h</td>
</tr>
<tr>
<td>PGA_A_G2_27</td>
<td>68h</td>
</tr>
<tr>
<td>PGA_A_G2_00</td>
<td>78h</td>
</tr>
<tr>
<td>PGA_A_G1_78</td>
<td>88h</td>
</tr>
<tr>
<td>PGA_A_G1_60</td>
<td>98h</td>
</tr>
<tr>
<td>PGA_A_G1_46</td>
<td>A8h</td>
</tr>
<tr>
<td>PGA_A_G1_33</td>
<td>B8h</td>
</tr>
<tr>
<td>PGA_A_G1_23</td>
<td>C8h</td>
</tr>
<tr>
<td>PGA_A_G1_14</td>
<td>D8h</td>
</tr>
<tr>
<td>PGA_A_G1_06</td>
<td>E8h</td>
</tr>
<tr>
<td>PGA_A_G1_00</td>
<td>F8h</td>
</tr>
</tbody>
</table>

As you can see in Table 1, the PGA_1 gain increment is not linear. This is not a problem, because more amplification is required for long distances. As you can see in Listing 1, the PGA_1_SetGain routine is called to change the amplifier gain and the value stored in the relative configuration register.

PRACTICAL CONSTRUCTION

Constructing the circuit isn’t difficult. It will take you just a few minutes. You may download the single-sided PCB design from the Circuit Cellar ftp site. The corresponding component layout is available on the ftp site, as well.

First, you have to mount the two wire links. The links are followed by the microcontroller socket, two resistors (mounted vertically), and two capacitors. Pay attention to the polarity of C2, which is a tantalum electrolytic capacitor. Follow with the two headers and jumper. J1 is a four-pin male header for the power supply and output connections. J2 is a 14-pin female header for the LCD connection.

The two ultrasonic transducers are soldered directly to the copper-sided padstacks. These common 40-kHz ultrasonic transducers are the kind used in car alarms. Make sure you

Table 1—The PSoC’s PGA gain values are used to set the PGA_1 gain during the measuring routine. For more information, study the PGA_A module datasheet from Cypress.
position the two ultrasonic transducers correctly. Usually, the negative terminal is soldered to the case for good noise immunity. You can make the connection to the LCD by soldering a 14-pin male connection to the LCD module with a flat ribbon cable or a set of individual flexible wires. After a final inspection of the populated board, you can insert a programmed PSoC microcontroller into its 28-pin socket.

POWER AND CALIBRATION

This circuit needs a 5-V regulated and filtered power supply. Because of the reduced circuit size, the voltage regulator is not included. If an external 5-V power source isn’t available and all you have is an unregulated 8-V supply, you can use a three-legged voltage regulator (i.e., 78L05 at 5 V–100 mA maximum) and some capacitors to increase ripple rejection and transient behavior.

You must calibrate the unit before it’s installed. The calibration procedure is simple. First, place the rangefinder 50 cm in front of a perpendicular, flat obstacle (e.g., a wall or wood panel). Second, remove jumper JP1 and power up the circuit by connecting the 5-V regulated power supply. Finally, insert jumper JP1 and power down the circuit. At this point the circuit is calibrated and the offset value is stored in EEPROM. The value will be read from the software at each circuit power-up and used in the distance calculating operation.

Figure 5 shows the text displayed on the LCD in Normal and Calibration modes. This text is easy to change, because it’s stored as ASCII strings. You may download the strings from the main.asm file on the Circuit Cellar ftp site.

THINGS TO CONSIDER

I used the 28-pin CY8C26443 microcontroller because of its availability; however, you can use the eight- (if you don’t use the LCD) or 20-pin versions for a smaller PCB. With the LCD connected, you can display useful information while setting up and calibrating your own PSoC RangeFinder.

It’s easy to change the program if you’re thinking about modifying the device’s behavior. Because any one of several obstacles can surface at any time, the ultrasonic distance meter can make mistakes during the measurement process. However, if you want to prevent measurement errors, you can modify the software to calculate the average value of several measurements and discard the measured values that are out of range.

The measurement process is based on a typical air temperature of 22°C.
This can be limiting when the specific application involves a wide operating temperature range.

If you use a 28- or 20-pin integrated circuit, there will be a lot of free pins in the PSoC microcontroller. It would be an improvement to implement an external integrated temperature sensor to measure the air temperature. Because of its low accuracy (± 20°C), the internal FlashTemp module isn’t suitable for the job. But, if you want to increase the precision, you can calculate and compensate for the different sound velocities at different air temperatures.

Fabio Piana has been teaching electronics and systems automation for the last 15 years in several technical schools in Italy. In addition, he’s an electronics design consultant. You may reach him at fabiopia@tiscali.it.

PROJECT FILES

To download the code, go to ftp.circuitcellar.com/pub/Circuit_Cellar/2003/150/.

RESOURCES

———, “PSoC Designer, PGA_A Module Data Sheet,” 2002.

SOURCE

CY8C26443 PSoC Microcontroller
Cypress MicroSystems, Inc.
(877) 751-6100
www.cypressmicro.com