ttest
One-sample t-test

Syntax

\[
\begin{align*}
\text{h} &= \text{ttest}(x) \\
\text{h} &= \text{ttest}(x,m) \\
\text{h} &= \text{ttest}(x,y) \\
\text{h} &= \text{ttest}(\ldots,\text{alpha}) \\
\text{h} &= \text{ttest}(\ldots,\text{alpha},\text{tail}) \\
\text{h} &= \text{ttest}(\ldots,\text{alpha},\text{tail},\text{dim}) \\
[\text{h},\text{p}] &= \text{ttest}(\ldots) \\
[\text{h},\text{p},\text{ci}] &= \text{ttest}(\ldots) \\
[\text{h},\text{p},\text{ci},\text{stats}] &= \text{ttest}(\ldots)
\end{align*}
\]

Description

\(h = \text{ttest}(x) \) performs a \(t \)-test of the null hypothesis that data in the vector \(x \) are a random sample from a normal distribution with mean 0 and unknown variance, against the alternative that the mean is not 0. The result of the test is returned in \(h \). \(h = 1 \) indicates a rejection of the null hypothesis at the 5% significance level. \(h = 0 \) indicates a failure to reject the null hypothesis at the 5% significance level.

\(x \) can also be a matrix or an \(N \)-dimensional array. For matrices, \(\text{ttest} \) performs separate \(t \)-tests along each column of \(x \) and returns a vector of results. For \(N \)-dimensional arrays, \(\text{ttest} \) works along the first non-singleton dimension of \(x \).

The test treats NaN values as missing data, and ignores them.

\(h = \text{ttest}(x,m) \) performs a \(t \)-test of the null hypothesis that data in the vector \(x \) are a random sample from a normal distribution with mean \(m \) and unknown variance, against the alternative that the mean is not \(m \).

\(h = \text{ttest}(x,y) \) performs a paired \(t \)-test of the null hypothesis that data in the difference \(x-y \) are a random sample from a normal distribution with mean 0 and unknown variance, against the alternative that the mean is not 0. \(x \) and \(y \) must be vectors of the same length, or arrays of the same size.

\(h = \text{ttest}(\ldots,\text{alpha}) \) performs the test at the \((100*\text{alpha})\)% significance level. The default, when unspecified, is \(\text{alpha} = 0.05 \).

\(h = \text{ttest}(\ldots,\text{alpha},\text{tail}) \) performs the test against the alternative specified by the string \(\text{tail} \). There are three options for \(\text{tail} \):

- ‘both’ — Mean is not 0 (or \(m \)) (two-tailed test). This is the default, when \(\text{tail} \) is unspecified.
- ‘right’ — Mean is greater than 0 (or \(m \)) (right-tail test)
- ‘left’ — Mean is less than 0 (or \(m \)) (left-tail test)

\(\text{tail} \) must be a single string, even when \(x \) is a matrix or an \(N \)-dimensional array.

\(h = \text{ttest}(\ldots,\text{alpha},\text{tail},\text{dim}) \) works along dimension \(\text{dim} \) of \(x \), or of \(x-y \) for a paired test. Use \([\]\) to pass in default values for \(m \), \(\text{alpha} \), or \(\text{tail} \).

\([\text{h},\text{p}] = \text{ttest}(\ldots) \) returns the \(p \)-value of the test. The \(p \)-value is the probability, under the null hypothesis, of observing a value as extreme or more extreme of the test statistic

\[
t = \frac{\bar{x} - \mu}{s / \sqrt{n}}
\]

where \(\bar{x} \) is the sample mean, \(\mu = 0 \) (or \(m \)) is the hypothesized population mean, \(s \) is the sample standard deviation, and \(n \) is the sample size. Under the null hypothesis, the test statistic will have Student’s \(t \) distribution with \(n - 1 \) degrees of freedom.
[h,p,ci] = \texttt{ttest}(...) returns a 100\%(1 - \textit{alpha})% confidence interval on the population mean, or on the difference of population means for a paired test.

[h,p,ci,stats] = \texttt{ttest}(...) returns the structure \texttt{stats} with the following fields:

- \textit{tstat} — Value of the test statistic
- \textit{df} — Degrees of freedom of the test
- \textit{sd} — Sample standard deviation

Example

Simulate a random sample of size 100 from a normal distribution with mean 0.1:

\[x = \text{normrnd}(0.1,1,1,100); \]

Test the null hypothesis that the sample comes from a normal distribution with mean 0:

\[[h,p,ci] = \text{ttest}(x,0) \]
\[h = 0 \]
\[p = 0.8323 \]
\[ci = [-0.1650 0.2045] \]

The test fails to reject the null hypothesis at the default \(\alpha = 0.05 \) significance level. Under the null hypothesis, the probability of observing a value as extreme or more extreme of the test statistic, as indicated by the \textit{p}-value, is much greater than \(\alpha \). The 95\% confidence interval on the mean contains 0.

Simulate a larger random sample of size 1000 from the same distribution:

\[y = \text{normrnd}(0.1,1,1,1000); \]

Test again if the sample comes from a normal distribution with mean 0:

\[[h,p,ci] = \text{ttest}(y,0) \]
\[h = 1 \]
\[p = 0.0160 \]
\[ci = [0.0142 0.1379] \]

This time the test rejects the null hypothesis at the default \(\alpha = 0.05 \) significance level. The \textit{p}-value has fallen below \(\alpha = 0.05 \) and the 95\% confidence interval on the mean does not contain 0.

Because the \textit{p}-value of the sample \(y \) is greater than 0.01, the test will fail to reject the null hypothesis when the significance level is lowered to \(\alpha = 0.01 \):

\[[h,p,ci] = \text{ttest}(y,0,0.01) \]
\[h = 0 \]
\[p = 0.0160 \]
\[ci = [-0.0053 0.1574] \]

Notice that at the lowered significance level the 99\% confidence interval on the mean widens to contain 0.

This example will produce slightly different results each time it is run, because of the random sampling.

See Also