1 Definition

A vector space V is a collection of vectors closed under addition and scalar multiplication; the operations of addition and scalar multiplication must satisfy the following properties:

1. Commutativity of addition:

 $u + v = v + u$ for all $u, v \in V$

2. Associativity of addition:

 $u + (v + w) = (u + v) + w$ for all $u, v, w \in V$

3. Identity element of addition:

 There exists $0 \in V$ such that $u + 0 = u$ for all $u \in V$

4. Additive inverses:

 For each $u \in V$, there exists a unique $-u \in V$ such that $u + (-u) = 0$

5. Identity element of scalar multiplication:

 $1u = u$ for all $u \in V$

6. Associativity of scalar multiplication:

 $(c_1c_2)u = c_1(c_2u)$ for all $c_1, c_2 \in \mathbb{R}$ and $u \in V$

7. Distributivity of scalar multiplication with respect to vector addition:

 $c(u + v) = cu + cv$ for all $c \in \mathbb{R}$ and $u, v \in V$

8. Distributivity of scalar multiplication with respect to scalar addition:

 $(c_1 + c_2)u = c_1u + c_2u$ for all $c_1, c_2 \in \mathbb{R}$ and $u \in V$

A non-empty subset $W \subseteq V$ is a subspace of V if W is closed under addition and scalar multiplication.
2 Examples

Exercise 1. Let \(V \) be the set of polynomials in \(x \) on the interval \([-1, 1]\) of degree at most 3, i.e. \(V \) is the set of functions \(f : [-1, 1] \to \mathbb{R} \) that can be written \(f(x) = a_3x^3 + a_2x^2 + a_1x + a_0 \) for some scalars \(a_0, a_1, a_2, a_3 \in \mathbb{R} \).

Let \(f \in V \) be given by \(f(x) = 4x^3 + 3x^2 + 2x + 1 \) and \(g \in V \) be given by \(g(x) = x^3 - x^2 - 1 \).

(a) What is \(f + g \)? Is it in \(V \)?

(b) What is \(3f \)? Is it in \(V \)?

(c) What is the additive inverse of \(g \)? Is it in \(V \)?

(d) Depict \(f, g, \) and \(3f - g \) together on a single plot. Label each vector.

Hints: Plot the functions over a fine range of values in the interval \([-1, 1]\) (e.g. \(x = -1:0.01:1 \)). To perform element-wise exponentiation, use the \(.^\ast \) operator (e.g. \(x .^\ast 2 \); no space between the period and carat).

Check for yourself that \(V \) is indeed a vector space.

Exercise 2. Let \(W = \{f \in V : f'(0) = 0\} \) (where \(V \) is defined in Exercise 1, and \(f'(c) \) is the first derivative of \(f \) evaluated at \(c \in \mathbb{R} \)). In other words, \(W \) are the set of polynomials in \(V \) that are “flat” at 0.

(a) Let \(f \in V \) and \(g \in V \) be as defined in Exercise 1. Is \(f \in W \)? Is \(g \in W \)?

(b) Show that \(W \) is closed under addition and scalar multiplication. Conclude that \(W \) is a subspace of \(V \).

(c) Let \(h(x) = 2x^2 + 1 \). (Check for yourself that \(h \in W \).) Depict \(g, h, \) and \(2g + h \) together on a single plot. Label each vector.

(d) True or false: Each \(f \in W \) can be written as a linear combination of \(f_0(x) = 1, f_2(x) = x^2/2, \) and \(f_3(x) = x^3/3 \).
3 Linear independence and bases

If \(c_1v_1 + c_2v_2 + \ldots + c_kv_k = 0 \) only if \(c_1 = c_2 = \ldots = c_k = 0 \), then \(v_1, v_2, \ldots, v_k \) are linearly independent. (Otherwise, they are linearly dependent, and one of them is a linear combination of the others.) The span of \(v_1, v_2, \ldots, v_k \) is the set of all linear combinations of \(v_2, v_2, \ldots, v_k \). A set \(B \subseteq V \) is a basis for vector space \(V \) if (1) \(B \) is linearly independent, and (2) the span of \(B \) is \(V \). If \(B \) is a basis for \(V \), and the number of vectors in \(B \) is \(d \), then we say \(V \) has dimension \(d \).

How does one test if vectors \(v_1, v_2, \ldots, v_k \) are linearly independent? Stack them side-by-side in a matrix

\[
A = \begin{bmatrix} v_1 & v_2 & \cdots & v_k \end{bmatrix}
\]

and check if the nullspace \(N(A) \) is different from \(\{0\} \). If \(N(A) \) contains some \(x = (x_1, x_2, \ldots, x_k) \neq 0 \), then this is evidence that \(v_1, v_2, \ldots, v_k \) are linearly dependent. (Do you see why?)

Exercise 3. Are “most” collections of \(n \) vectors in \(\mathbb{R}^n \) linearly independent? Test this experimentally by generating \(n \) random vectors in \(\mathbb{R}^n \) (use \texttt{randn} to generate the random vectors) and applying the above test of linear independence. Do this for \(n = 3 \), and repeat the experiment 100 times. Report how often the random set of vectors form a basis. Do things change if you move from \(n = 3 \) to \(n = 30 \)?

Exercise 4. Let \(V \) and \(W \) be the vector spaces defined in Exercises 1 and 2.

(a) Give an example of a basis \(B \) for \(W \).

(b) Name a vector \(v \in V \) so that \(B \cup \{v\} \) is a basis for \(V \).

(c) Give another basis for \(V \) (different from the one above) that includes the vector \(f(x) = x^3 + x^2 + x + 1 \).

(d) Vectors in \(V \) and \(W \) are not the usual kinds of vectors in \(\mathbb{R}^n \), so it doesn’t immediately make sense to stack them side-by-side in a matrix \(A \). How can one perform the test of linear independence on a collection of vectors in \(V \)? (Hint: If \(B \) is a basis for \(V \), then every vector in \(V \) can be written uniquely as a linear combination of basis vectors in \(B \).)

Check for yourself, using this test, that the bases you propose in the various parts of this exercise are indeed linearly independent.
(e) Let \(X = \{ f \in V : f(1) = 0 \} \). Give a basis for \(X \).

Depict the basis vectors together on a single plot. Label each vector.

(f) For \(c \in \mathbb{R} \), let \(f_c(x) = cx^3 + cx^2 + cx + c \). Let \(Y = \{ f_c \in V : c \in \mathbb{R} \} \). Give a basis for \(Y \).

Depict \(f_c \) for \(-1 \leq c \leq 1\) together on a single plot (use about 20 or so values of \(c \)). This depicts a “line segment” in the space \(V \).

For \(c \in \mathbb{R} \), let \(g_c(x) = cx^3 - cx^2 + cx - c \). Depict \(g_c \) for \(-1 \leq c \leq 1\) together on a single plot (or on the same plot with the \(f_c \)'s, but with a different color or line type). This is also a “line segment” in \(V \).

(g) What are the dimensions of \(V \), \(W \), \(X \), and \(Y \)?

(h) A function \(f \) is even if \(f(x) = f(-x) \) for all \(x \). Let \(Z = \{ f \in V : f \) is even\}. Is \(Z \) a subspace of \(V \)? If so, give a basis for it. If not, give a brief reason.

4 Misc.

Exercise 5. Which of the following sets are closed under ordinary addition?

(a) \(V = \{ \text{odd integers} \} \)

(b) \(V = \{ \text{even integers} \} \)

(c) \(V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \text{ are negative} \right\} \)

(d) \(V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ is non-singular} \right\} \)

Exercise 6. There are vector spaces whose notion of addition and scalar multiplication are not the usual ones we’re used to. For the following vector space \(V \), we’ll use “\(\oplus \)” denote the special “addition operation” for \(V \) (e.g. \(v \oplus w \)) and “\(\otimes \)” to denote the special “scalar multiplication operation” for \(V \) (e.g. \(3 \otimes v \)).
Let $V = \{ x \in \mathbb{R} : x > 0 \}$ be the set of positive real numbers. Addition and scalar multiplication in V are defined as follows. For $u, v \in V$, define $u \oplus v$ to be $u \times v$, where “×” is the usual multiplication operation (e.g. $3 \oplus 4 = 3 \times 4 = 12$). For $v \in V$ and $c \in \mathbb{R}$, define $c \otimes v$ to be v^c, meaning “v raised to the power of c” in the usual sense (e.g. $4 \otimes 3 = 3^4 = 81$; note that here, $3 \in V$ is the “vector” and $4 \in \mathbb{R}$ is the “scalar”).

(a) What is the “zero element” in V?

Hint: It is not the real number $0 \in \mathbb{R}$, because 0 is not positive and therefore $0 \not\in V$. But there is another element in V, which we’ll denote by $z \in V$, that serves as the “zero element” in that $v \oplus z = z \oplus v = v$ for every $v \in V$.

(b) Show that for every $u, v \in V$, we have $u \oplus v \in V$. That is, show that V is closed under “⊕ addition”.

(c) Show that for every $v \in V$ and $c \in \mathbb{R}$, we have $c \otimes v \in V$. That is, show that V is closed under “⊗ scalar multiplication”.

(d) Show that, for each $v \in V$, there is an element $w \in V$ such that $v \oplus w = z$, where z is the special “zero element”. That is, show that V is closed under “additive inverses”.