Universal source coding
and
the Online Bayes algorithm

Yoav Freund

January 19, 2006
Outline

Combining experts in the log loss framework

The online Bayes Algorithm
 Comparison to \texttt{Hedge}(\eta)

The performance bound
 Comparison to \texttt{Hedge}(\eta)
 Advantage over two part codes

Comparison with Bayesian Statistics

Computational issues
The log-loss framework

- Algorithm A predicts a sequence c_1, c_2, \ldots, c_T over alphabet $\Sigma = \{1, 2, \ldots, k\}$
- The prediction for the c_tth is a distribution over Σ: $p^t_A = \langle p^t_A(1), p^t_A(2), \ldots, p^t_A(k) \rangle$
- When c_t is revealed, the loss we suffer is $-\log p^t_A(c_t)$
- The cumulative log loss, which we wish to minimize, is $L_A^T = -\sum_{t=1}^{T} \log p^t_A(c_t)$
- $\lceil L_A^T \rceil$ is the code length if A is combined with arithmetic coding.
The game

- Prediction algorithm A has access to N experts.
- The following is repeated for $t = 1, \ldots, T$
 - Experts generate predictive distributions: $p_{1}^{t}, \ldots, p_{N}^{t}$
 - Algorithm generates its own prediction p_{A}^{t}
 - c^{t} is revealed.
- **Goal:** minimize regret:

$$- \sum_{t=1}^{T} \log p_{A}^{t}(c^{t}) + \min_{i=1,\ldots,N} \left(- \sum_{t=1}^{T} \log p_{i}^{t}(c^{t}) \right)$$
The online Bayes Algorithm

- **Total loss** of expert i

 $$L_i^t = - \sum_{s=1}^{t} \log p_i^s(c^s); \quad L_i^0 = 0$$

- **Weight** of expert i

 $$w_i^t = w_i^1 e^{-L_i^{t-1}} = w_i^1 \prod_{s=1}^{t-1} p_i^s(c^s)$$

- Freedom to choose initial weights.
 $$w_i^1 \geq 0, \sum_{i=1}^{N} w_i^1 = 1$$

- **Prediction** of algorithm A

 $$p_A^t = \frac{\sum_{i=1}^{N} w_i^t p_i^t}{\sum_{i=1}^{N} w_i^t}$$
The **Hedge\((\eta)\)** Algorithm

Consider action \(i\) at time \(t\)

- **Total loss:**
 \[L_t^i = \sum_{s=1}^{t-1} \ell_i^s \]

- **Weight:**
 \[w_t^i = w_1^i e^{-\eta L_t^i} \]

 Note freedom to choose initial weight \((w_1^i)\) \(\sum_{i=1}^{N} w_1^i = 1\).

- \(\eta > 0\) is the learning rate parameter. Halving: \(\eta \to \infty\)

- **Probability:**
 \[p_t^i = \frac{w_t^i}{\sum_{j=1}^{N} w_t^j}, \quad p_t^i = \frac{w_t^i}{\sum_{j=1}^{N} w_t^j} \]
Cumulative loss vs. Final total weight

Total weight: \(W^t = \sum_{i=1}^{N} w_i^t \)

\[
\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c_t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c_t)}{\sum_{i=1}^{N} w_i^t} = p_A(c_t)
\]

\[-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c_t)\]

\[-\log W^{T+1} = -\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p_A^t(c_t) = L_A^T\]

EQUALITY not bound!
Simple Bound

- Use uniform initial weights $w_i^1 = 1/N$
- Total Weight is at least the weight of the best expert.

\[
L_A^T = -\log W^{T+1} = -\log \sum_{i=1}^N w_i^{T+1} \\
= -\log \sum_{i=1}^N \frac{1}{N} e^{-L_i^T} = \log N - \log \sum_{i=1}^N e^{-L_i^T} \\
\leq \log N - \log \max_i e^{-L_i^T} = \log N + \min_i L_i^T
\]

- Dividing by T we get $\frac{L_A^T}{T} = \min_i \frac{L_i^T}{T} + \frac{\log N}{T}$
Upper bound on $\sum_{i=1}^{N} w_{i}^{T+1}$ for $\text{Hedge}(\eta)$

Lemma (upper bound)

For any sequence of loss vectors $\ell^{1}, \ldots, \ell^{T}$ we have

$$\ln \left(\sum_{i=1}^{N} w_{i}^{T+1} \right) \leq -(1 - e^{-\eta}) L_{\text{Hedge}}(\eta).$$
Tuning η as a function of T

- trivially $\min_i L_i \leq T$, yielding
 \[
 L_{\text{Hedge}}(\eta) \leq \min_i L_i + \sqrt{2T \ln N} + \ln N
 \]

- per iteration we get:
 \[
 \frac{L_{\text{Hedge}}(\eta)}{T} \leq \min_i \frac{L_i}{T} + \sqrt{\frac{2 \ln N}{T}} + \frac{\ln N}{T}
 \]
Bound better than for two part codes

- Simple bound as good as bound for two part codes (MDL) but enables online compression.
- Suppose we have K copies of each expert.
- Two part code has to point to one of the KN experts
 \[L_A \leq \log NK + \min_i L_i^T = \log NK + \min_i L_i^T \]
- If we use Bayes predictor + arithmetic coding we get:
 \[L_A = - \log W^{T+1} \leq \log K \max_i \frac{1}{NK} e^{-L_i^T} = \log N + \min_i L_i^T \]

- We don’t pay a penalty for copies.
- More generally, the regret is smaller if many of the experts perform well.
Comparison with standard Bayesian statistics

- The weight update rule is the same.
- Normalized weights = posterior probability distribution.
- Bayesian analysis interested in the final posterior.
- Bayesian analysis assumes the data is generated by a distribution in the support of the prior.
- Goal of Bayesian is to estimate true distribution, goal of online learning is to minimize regret.
- Optimality of algorithm is axiom of Bayesian statistics.
- Bayesian methods perform poorly when the loss is not log loss and the data not generated by a distribution in the support.
 - Loss can sometimes be defined through the noise distribution: square loss is equivalent to assuming gaussian noise.
 - For number of mistakes - Bayesian method cannot be “fixed”. Requires variable learning rate.
Computational Issues

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:
 - **Conjugate priors**: A prior over a continuous domain whose functional form does not change with when updated. Number of parameters defining posterior is constant. Update rule translates into update of parameters. Parameters correspond to “sufficient statistics”. Exists for the family of exponential distributions.
 - **Markov Chain Monte Carlo**: Sample the posterior. Can sometimes be done efficiently. Efficient sampling relates to mixing rate of markov chain whose limit dist is the posterior dist.
Next class

- How to deal with an uncountably infinite class of models.
- To maintain Satisfactory status in class:
 - Register on TWiki and update your information.
 - If you are taking the class for 4 points, start a project page.
- For EXTRA credit
 - Post (and answer) questions.
 - Read the background material I put on the class twiki page (for class no. 5)