Nonstochastic Bandits
and Partial Monitoring

Nicolò Cesa-Bianchi

Università degli Studi di Milano
The bandit problem

- Rewards $X_{i,1}, X_{i,2}, \ldots$ of machine i are i.i.d. random variables.
- An allocation policy prescribes which machine I_t to play at time t based on the realization of $X_{I_{t-1},1}, X_{I_{t-1},2}, \ldots, X_{I_{t-1},t-1}$.
- Want to play as often as possible the machine with largest reward expectation:

$$\mu^* = \max_{i=1,\ldots,N} \mathbb{E} X_{i,1}$$
Finite-time regret

Definition (Regret after \(n \) plays)

\[
\mu^* n - \sum_{t=1}^{n} \mathbb{E} X_{I_t, t}
\]

Theorem (Lai and Robbins, 85)

There exist allocation policies satisfying

\[
\mu^* n - \sum_{t=1}^{n} \mathbb{E} X_{I_t, t} \leq c N \ln n
\]

uniformly over \(n \)
Horizon-dependent reward distributions

Fact
For each n, there are simple reward distributions such that the regret of any allocation policy is at least order of \sqrt{nN}

- Fix arbitrary policy A
- Assume $\{0, 1\}$-valued rewards are generated by fair coin flips
- Increase by $\sqrt{N/n}$ the expectation μ_k of a random machine k
Proof sketch

- $T_i =$ number of times i was chosen by A in the n plays
- Total reward of k increases by $n \sqrt{N/n} = \sqrt{nN}$
- $\mathbb{E} T_k$ increases by at most αn
- Total reward of A increases by at most $\alpha n \sqrt{N/n} = \alpha \sqrt{nN}$
- Regret is at least $(1 - \alpha) \sqrt{nN}$
The nonstochastic bandit problem
[Auer, C-B, Freund, and Schapire, 2002]

What if probability is removed altogether?

Nonstochastic bandits

Bounded real rewards $x_{i,1}, x_{i,2}, \ldots$ are deterministically assigned to each machine i

- Analogies with repeated play of an unknown game
 [Baños, 1968; Megiddo, 1980]
- Allocation policies are allowed to randomize
Definition (Regret)

\[
\max_{i=1,\ldots,N} \left(\sum_{t=1}^{n} x_{i,t} \right) - \mathbb{E} \left[\sum_{t=1}^{n} x_{I_t,t} \right]
\]
A nearly optimal randomized policy

- **Reward estimates**
 \[\hat{x}_{i,t} = \frac{x_{i,t}}{p_{i,t}} I\{I_t=i\} \]

- **Note**
 \[\mathbb{E}\left[\hat{x}_{i,t} \mid I_1, \ldots, I_{t-1} \right] = \frac{x_{i,t}}{p_{i,t}} \times p_{i,t} + 0 \times (1 - p_{i,t}) = x_{i,t} \]

- **Weights.** At time \(t \), machine \(i \) is assigned weight
 \[w_{i,t-1} = \exp \left(\frac{\gamma}{N} \sum_{s=1}^{t-1} \hat{x}_{i,s} \right) \]

- **Randomization.** At time \(t \), machine \(i \) is played with prob.
 \[(1 - \gamma) \frac{w_{i,t-1}}{W_{t-1}} + \frac{\gamma}{N} \]
Theorem

\[G_n^* = \max_{i=1,\ldots,N} \sum_{t=1}^{n} x_{i,t} \quad \text{and} \quad \hat{G}_n = \sum_{t=1}^{n} x_{I_t,t} \]

\[G_n^* - \mathbb{E} \hat{G}_n \leq 2 \sqrt{2 \sqrt{nN \ln N}} \]

- Lower bound was \(\sqrt{nN} \)
- Adaptive choice of \(\gamma \) avoids fixing the horizon \(n \)
Variance problem

- Variance of payoff estimates

\[\text{VAR} [\hat{x}_{i,t}] \approx \frac{1}{p_{i,t}^2} \times p_{i,t} \approx \frac{N}{\gamma} \approx \sqrt{\frac{nN}{\ln N}} \]

- Overall variance

\[\sum_{t=1}^{n} \text{VAR} [\hat{x}_{i,t}] \approx n^{3/2} \]

- Thus, with constant probability, the regret can be of the order of

\[\sqrt{\sum_{t=1}^{n} \text{VAR} [\hat{x}_{i,t}]} \approx n^{3/4} \]
Bounding the regret in probability

- **Low-variance estimates**

\[
\hat{x}_{i,t} = \frac{x_{i,t}}{p_{i,t}} \mathbb{I}_{\{I_t=i\}} + \frac{\beta}{p_{i,t}}
\]

- Then, with high probability

\[
\sum_{t=1}^{n} x_{i,t} \leq \sum_{t=1}^{n} \hat{x}_{i,t} + \beta nN \quad \text{for all } i = 1, \ldots, N
\]

- Choosing \(\beta \approx \sqrt{\frac{\ln N}{nN}} \)

\[
G_n^* - \hat{G}_n \leq \frac{11}{2} \sqrt{nN \ln \frac{N}{\delta}} + \frac{\ln N}{2} \quad \text{w.p. at least } 1 - \delta
\]
Competing against arbitrary policies

\[
\begin{array}{cccccccccc}
0 & 1 & 0 & 0 & 7 & 9 & 9 & 8 & 9 & 0 & 0 & 1 \\
5 & 7 & 9 & 6 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 & 0 & 1 & 0 & 0 & 8 & 9 & 8 & 7
\end{array}
\]
Tracking regret

- **Regret against an arbitrary and unknown policy**
 \[(j_1, j_2, \ldots, j_n)\]
 \[
 \sum_{t=1}^{n} x_{j_t,t} - \mathbb{E} \left[\sum_{t=1}^{n} x_{I_t,t} \right]
 \]

- **Weight sharing technique**
 \[
 w_{i,t} = w_{i,t-1} \exp \left(\frac{\gamma}{N} \hat{x}_{i,t} \right) + \frac{\alpha}{N} \sum_{j=1}^{N} w_{j,t-1}
 \]
Definition (Complexity of a policy)

\((j_1, j_2, \ldots, j_n)\) is number of times the policy switches to a different machine.

Theorem

For all fixed \(S\), the regret of weight sharing against any policy of complexity bounded by \(S\) is at most

\[\sqrt{S \, nN \ln N}\]
Payoffs are negative (losses) and come from a known **loss matrix** with entries in $[0, 1]$.

<table>
<thead>
<tr>
<th>outcomes</th>
<th>1</th>
<th>\cdots</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\ell(1,1)$</td>
<td>\cdots</td>
<td>$\ell(1,M)$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>$\ell(I_t,y_t)$</td>
<td>\vdots</td>
</tr>
<tr>
<td>N</td>
<td>$\ell(N,1)$</td>
<td>\cdots</td>
<td>$\ell(N,M)$</td>
</tr>
</tbody>
</table>
After drawing I_t the forecaster observes y_t

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>\ldots</th>
<th>y_t</th>
<th>\ldots</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\ell(1,1)$</td>
<td>$\ell(1,y_t)$</td>
<td>$\ell(1,M)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>$\ell(N,1)$</td>
<td>$\ell(N,y_t)$</td>
<td>$\ell(N,M)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regret: $\sqrt{n \ln N}$
After drawing I_t the forecaster observes $\ell(I_t, y_t)$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>$\ell(1, 1)$</th>
<th>$\ell(1, M)$</th>
<th>$\ell(I_t, y_t)$</th>
<th>$\ell(N, 1)$</th>
<th>$\ell(N, M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>$\ell(1, M)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>$\ell(I_t, y_t)$</td>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>$\ell(N, 1)$</td>
<td></td>
<td>$\ell(N, M)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regret: $\sqrt{nN \ln N}$
After drawing I_t the forecaster observes $h(I_t, y_t)$

Loss matrix L

<table>
<thead>
<tr>
<th>1</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell(1,1)$</td>
<td>$\ell(1,M)$</td>
</tr>
<tr>
<td>\vdots</td>
<td>$\ell(I_t,y_t)$</td>
</tr>
<tr>
<td>$\ell(N,1)$</td>
<td>$\ell(N,M)$</td>
</tr>
</tbody>
</table>

Feedback matrix H

<table>
<thead>
<tr>
<th>1</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(1,1)$</td>
<td>$h(1,M)$</td>
</tr>
<tr>
<td>\vdots</td>
<td>$h(I_t,y_t)$</td>
</tr>
<tr>
<td>$h(N,1)$</td>
<td>$h(N,M)$</td>
</tr>
</tbody>
</table>

In the bandit case, $H \equiv L$
The revealing action game (apple tasting)

[Helmbold, Littlestone, and Long, 2000]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

H

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>
Dynamic pricing

- Forecaster’s action $I_t \in \{1, 2, \ldots, N\}$ is the price at which a product sold online is offered to t-th customer.

- Adversary’s action $y_t \in \{1, 2, \ldots, N\}$ is maximum price at which t-th customer is willing to buy the product.

- Loss matrix arbitrary.

- Feedback matrix

$$h(I_t, y_t) = \begin{cases}
\text{SOLD} & \text{if } I_t \leq y_t \\
\text{NOT SOLD} & \text{otherwise}
\end{cases}$$
Controlling the regret

- Sufficient (and almost necessary) condition

\[L = KH \quad \text{for some matrix } K \]

- Define

\[\hat{\ell}(i, y_t) = \frac{k(i, I_t) h(I_t, y_t)}{p_{I_t,t}} \]

- Since \(L = KH \)

\[\mathbb{E}\left[\hat{\ell}(i, y_t) \mid I_1, \ldots, I_{t-1} \right] = \sum_{j=1}^{N} \frac{k(i, j) h(j, y_t)}{p_{j,t}} \times p_{j,t} = \ell(i, y_t) \]
There exists a forecaster whose regret is with high probability at most
\[c(Nn)^{2/3}(\ln N)^{1/3} \]
for any partial monitoring game \((L, H)\) satisfying \(L = KH\) for some \(K\)
Theorem

In the revealing action game, if a forecaster plays the revealing action at most m times, then its regret is at least

$$c_1 m + c_2 \frac{n}{\sqrt{m}}$$

for some sequence y_1, \ldots, y_n
In any partial monitoring problem,

- either the regret is $\Omega(n)$ for all forecasters
- or there exists a forecaster whose regret is $O(n^{2/3})$