Generalization Bounds for Averaged Classifiers

Yoav Freund, Yishay Mansour, Robert E. Shapire

March 16, 2006

presented by Brian McFee for CSE291
“There are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns— the ones we don’t know we don’t know.”

— Donald Rumsfeld

- Overfitting occurs when the hypothesis class is too complex relative to the training data.
- We can avoid overfitting by identifying points that are too close to call reliably (known unknowns) and abstaining from prediction.
Averaged Classifiers

- We have a classification problem of mapping I.I.D. points X from some unknown distribution D to a set of labels Y.
- Let \mathcal{H} be a class of hypotheses: $h \in \mathcal{H}$ maps a point x to a label $y \in \{-1, +1\}$.
- We want to classify X based on a weighted average of all hypotheses in \mathcal{H}.
Generalization Example

- Suppose that the best hypothesis in our class, h^*, has 1% error over the unknown distribution D, and our training set is such that the generalization error will be 5%.

- If we can choose to abstain from prediction, we can hope that we only predict incorrectly 1% of the time, and the remaining 4% will have no prediction.

Key idea: learn to distinguish the points that we won’t be sure about (4%) from the points that even h^* will get wrong (1%).
Toy Example

Rectangles represent hypotheses and “+” and “-” are the labels.
Weights and Prediction

- Weight for a hypothesis is determined by the exponential weights formula:
 \[w(h) = e^{-\eta \hat{\epsilon}(h)}, \]
 for some learning rate \(\eta \) and training error \(\hat{\epsilon}(h) \).

- For a data point \(x \), predict \(y \) using the log ratio of weights assigned to hypotheses:
 \[
 \hat{\rho}(x) = \frac{1}{\eta} \ln \left(\frac{\sum_{h:h(x)=+1} w(h)}{\sum_{h:h(x)=-1} w(h)} \right)
 \]
After training on \(m \) samples \((x_i, y_i)\), define the training error of a hypothesis \(h \) as the fraction of mistakes:

\[
\hat{\epsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} 1(h(x_i) \neq y_i).
\]
Note that $|\hat{\rho}(x)|$ indicates the amount of agreement among hypotheses on x.

If $|\hat{\rho}(x)|$ is near 0, the prediction is weak.

We can exploit this measure of confidence in the prediction by adding a threshold parameter:

$$\hat{P}(x) = \begin{cases}
\text{sign}(\hat{\rho}(x)) & \text{if } |\hat{\rho}(x)| > \Delta \\
0 & -\Delta \leq \hat{\rho}(x) \leq \Delta
\end{cases}$$
Averaged Classifiers
Generalization Bounds

Introduction
Some Definitions...

Log Ratio Prediction

\[D = 0.50 \]

\[\frac{w(+1)}{w(-1)} \]

\[\Delta = 0.50 \]

\[p(x) \]

\[w(+1)/w(-1) \]

\[P(x) = -1 \quad P(x) = 0 \quad P(x) = 1 \]

\[-5 \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 3.5 \quad 4 \]

\[-5 \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 3.5 \quad 4 \]
How well does \(\hat{P}(x) \) generalize?

Note that \(\hat{\rho}(x) \) is just an approximation of the unknown \(\rho(x) \):

\[
\rho(x) = \frac{1}{\eta} \ln \left(\frac{\sum_{h: h(x) = 1} e^{-\eta \hat{\varepsilon}(h)}}{\sum_{h: h(x) = -1} e^{-\eta \hat{\varepsilon}(h)}} \right)
\]

where \(\hat{\varepsilon}(h) \approx \varepsilon(h) = \Pr_{(x, y) \sim D}[h(x) \neq y] \).

For our prediction algorithm \(\hat{P}(x) \) to be useful, we need to satisfy two conditions:

1. \(\hat{\rho}(x) \) should be close to the true \(\rho(x) \) with high probability, ie. the effect of approximating \(\varepsilon(h) \) should be bounded.
2. If \(\hat{P}(x) \neq 0 \), the probability of making a mistake should be small.
Theorem 1: \(\hat{\rho}(x) \approx \rho(x) \)

- For any distribution \(D \), any instance \(x \), any \(s \in \{-1, +1\} \), and any \(\lambda, \eta > 0 \),

\[
\Pr_{S \sim D^m} \left[s(\hat{\rho}(x) - \rho(x)) \geq 2\lambda + \frac{\eta}{8m} \right] \leq 2e^{-2\lambda^2 m}
\]

- Note that this is independent of the hypothesis class \(\mathcal{H} \).

- To show that \(\hat{\rho}(x) \) is close to \(\rho(x) \), we take two steps:
 1. \(\hat{\rho}(x) \) is concentrated around \(E[\hat{\rho}(x)] \),
 2. \(E[\hat{\rho}(x)] \) is close to \(\rho(x) \).
Some Notation...

- Recall

\[\rho(x) = \frac{1}{\eta} \ln \left(\frac{\sum_{h: h(x) = +1} w(h)}{\sum_{h: h(x) = -1} w(h)} \right) \]

\[= \frac{1}{\eta} \ln \left(\sum_{h: h(x) = +1} w(h) \right) - \frac{1}{\eta} \ln \left(\sum_{h: h(x) = -1} w(h) \right) \]

- For any \(K \subseteq H \), define

\[R(K) = \frac{1}{\eta} \ln \left(\sum_{h \in K} w(h) \right) \]
McDiarmid’s Theorem

Let $X_1, \ldots, X_m \in V^m$ be independent random variables. For $f : V^m \to \mathbb{R}$, if

$$|f(x_1, \ldots, x_m) - f(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_m)| \leq c_i,$$

Then for $\lambda > 0$, $s \in \{-1, +1\}$,

$$\Pr [s(f(X_1, \ldots, X_m) - E[f(X_1, \ldots, X_m)]) \geq \lambda] \leq \exp \left(\frac{-2\lambda^2}{\sum_{i=1}^{m} c_i^2} \right)$$
Applying McDiarmid’s Theorem

- Assume some empirical $\hat{R}(K)$ learned from m samples.
- If we replace (x_i, y_i) with (x'_i, y'_i) in the sample data, we get $\hat{R}'(K)$.
- Then the difference is bounded by the penalty for making a single mistake:

$$\hat{R}'(K) - \hat{R}(K) = \frac{1}{\eta} \ln \left(\frac{\sum_{h \in K} e^{-\eta \hat{\epsilon}'(h)}}{\sum_{h \in K} e^{-\eta \hat{\epsilon}(h)}} \right)$$

$$\leq \frac{1}{\eta} \ln \left(\max_{h \in K} e^{-\eta (\hat{\epsilon}'(h) - \hat{\epsilon}(h))} \right)$$

$$= \max_{h \in K} (\hat{\epsilon}(h) - \hat{\epsilon}'(h)) \leq \frac{1}{m}$$
McDiarmid’s Theorem (continued)

Setting \(c_i = \frac{1}{m} \) for all \(i \), we get:

\[
\Pr \left[s \left(\hat{R}(K) - E \left[\hat{R}(K) \right] \right) \geq \lambda \right] \leq \exp \left(\frac{-2\lambda^2}{\sum_{i=1}^{m} \frac{1}{m^2}} \right) = e^{-2\lambda^2 m}
\]

So \(\hat{R}(K) \) is concentrated around \(E \left[\hat{R}(K) \right] \).
Averaged Classifiers

Generalization Bounds

\[\hat{\rho}(x) \approx \rho(x) \]
\[P(x) \approx h^*(x) \]

\[E[\hat{R}(K)] \approx R(K) \text{ (Lower Bound)} \]

- By convexity of \(\ln \left(\sum e^{x_i} \right) \), we can apply Jensen’s inequality:

\[
\eta E[\hat{R}(K)] = E \left[\ln \left(\sum_{h \in K} e^{-\eta \hat{\varepsilon}(h)} \right) \right] \geq \ln \left(\sum_{h \in K} e^{-\eta E[\hat{\varepsilon}(h)]} \right) \\
= \ln \left(\sum_{h \in K} e^{-\eta \varepsilon(h)} \right) = \eta R(K)
\]

- In the other direction, we get

\[
E[\hat{R}(K)] \leq R(K) + \frac{\eta}{8m}
\]

- So

\[
R(K) \leq E[\hat{R}(K)] \leq R(K) + \frac{\eta}{8m}
\]
Averaged Classifiers
Generalization Bounds

\[\hat{\rho}(x) \approx \rho(x) \]
\[P(x) \approx h^*(x) \]

Back to Theorem 1...

Partition \(\mathcal{H} \) into \(H_+ \) and \(H_- \): the subsets that classify an instance \(x \) as +1 and −1 respectively.

Then

\[
\rho(x) - \hat{\rho}(x) = R(H_+) - R(H_-) - \hat{R}(H_+) + \hat{R}(H_-) \\
= R(H_+) - \hat{R}(H_+) - (R(H_-) - \hat{R}(H_-))
\]

We know that

1. \(\Pr \left[R(H_+) - \hat{R}(H_+) > \lambda \right] \leq e^{-2\lambda^2 m} \),
2. \(\Pr \left[\hat{R}(H_-) - R(H_-) > \lambda + \frac{\eta}{8m} \right] \leq e^{-2\lambda^2 m} \),

so the probability of both occurring is bounded:

\[
\Pr \left[s(\rho(x) - \hat{\rho}(x)) \geq \lambda + \lambda + \frac{\eta}{8m} \right] \leq 2e^{-2\lambda^2 m}.
\]
Theorem 2: \(\hat{P}(x) \approx \text{sign}(\rho(x)) \)

- If \(\hat{P}(x) \neq 0 \) (we make a prediction), then \(|\hat{\rho}(x)| \geq \Delta \).
- By Theorem 1, we can set \(\Delta \) such that the probability of incorrect prediction is bounded:
 \[
 \Pr_{(x,y) \sim D} [|\hat{\rho}(x)| \geq \Delta \land \text{sign}(\hat{\rho}(x)) \neq \text{sign}(\rho(x))] \leq \delta
 \]
 where \(\delta \) is a function of \(\Delta, \eta, m \).
- This holds with probability \(1 - \delta \) over the random training set.
Parameters: \(\text{sign}(\rho(x)) \approx h^*(x) \)

- For \(q \in (0, 1/2) \) and \(\delta > 0 \), we can set the parameters as follows:

 \[
 \eta = \ln(8|\mathcal{H}|)m^{1/2-q} \quad \Delta = 2\sqrt{\frac{1}{m} \ln(\sqrt{2}/\delta)} + \frac{\ln(8|\mathcal{H}|)}{8m^{1/2+q}}
 \]

- For \(m \geq 8 \),

 \[
 \Pr_{(x,y) \sim D} [\text{sign}(\rho(x)) \neq y] = 2\varepsilon(h^*) + O \left(\frac{\ln(m)}{m^{1/2-q}} \right)
 \]

 \[
 \Pr_{(x,y) \sim D} [|\hat{\rho}(x)| > \Delta \wedge \text{sign}(\hat{\rho}(x)) \neq y] = 2\varepsilon(h^*) + O \left(\frac{\ln(m)}{m^{1/2-q}} \right) + \delta
 \]
We can also bound the probability of abstaining from prediction.

If

\[m \geq \left[8 \sqrt{\ln \frac{\sqrt{2}}{\delta} \ln(8|\mathcal{H}|)} \right]^{1/q}, \]

then

\[\Pr_{(x,y) \sim D} [y \rho(x) \leq 2\Delta] = 5\varepsilon(h^*) + O \left(\frac{\sqrt{-\ln \delta + \ln |\mathcal{H}|}}{m^{1/2-q}} \right) \]
Conclusions

- The empirical log ratio $\hat{\rho}(x)$ is a good approximation of the true ratio $\rho(x)$ (from Theorem 1).
- $\rho(x)$ is stable and independent of the size of the hypothesis class (from McDiarmid’s theorem).
- $\rho(x)$ behaves almost as well as the best hypothesis $h^* \in \mathcal{H}$.
References